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Abstract. On bulk layered single crystals (Bi0.25Sb0.75)2Te3 with a hole concentration 3.6×1019 cm−3 and
a mobility µ = 3.7 × 103 cm2/Vs magnetoresistance and Hall effect investigations were performed in the
temperature range T = 1.4 K ... 20 K in magnetic fields up to 18 T. For the magnetic field perpendicular
to the layered structure giant Shubnikov-de Haas oscillations are measured; the positions of the maxima
are triplets in the reciprocally scaled magnetic field. From the damping of the amplitudes with increasing
temperature the cyclotron mass mc = 0.12m0 is evaluated. Correlated with the SdH oscillations doublets of
Hall effect plateaus (or kinks in low fields) are found. The weak well known Shubnikov-de Haas oscillations
from the generally accepted multivallied highest valence band can be detected as a modulation on the giant
oscillation. The high anisotropy of the SdH oscillations and their triplet structure in connection with the
layered crystal structure lead us to suggest that the effects are caused by hole carrier pairing (mediated
by the bipolaron mechanism) in quasi 2D sheets parallel to the crystal layer stacks. The measured Hall
plateau resistances coincide with the quantum Hall effect values considering the number of layer stacks
and the valley degeneracy of the 3D hole carrier reservoir. The ratio of spin splitting to Landau (cyclotron)
splitting is observed to be S = 1± 0.25.

PACS. 72.20.My Galvanomagnetic and other magnetotransport effects – 73.20.Dx Electron states in low-
dimensional structures (superlattices, quantum well structures and multilayers) – 73.40.Hm Quantum Hall
effect (integer and fractional)

1 Introduction

The mixed crystal system (Bi1−xSbx)2Te3 which is ap-
plied in the field of thermoelectrics is also of special in-
terest with respect to the fundamental influence of high
magnetic fields onto the electrical conductivity in solids
because of

i) its layered structure, possibly causing large anisotropy
effects, and

ii) the possibility of tuning the (hole) carrier concentra-
tion in wide ranges via Sb–Bi–(Te) site and concentra-
tion exchange, respectively, without large lattice dis-
tortions.

Bi2Te3 and Sb2Te3 crystals have the structure of
tetradymite (space group D5

3d) [1], the atomic arrange-
ment of which is most simply visualized in terms of the
layer structure. Perpendicular to the trigonal c axis stacks
of hexagonal layered planes are arranged, each stack con-
sisting of five planes containing atoms of the same type
according to the scheme Te(1)–Bi(Sb)–Te(2)–Bi(Sb)–Te(1).
The nature of bonding is under discussion but most

authors assume the bonding between the adjacent Te(1)

layers to be of the van der Waals type. The Te(2) sites are
sixfold coordinated, while the Te(1) sites have three near-
est neighbours. The shorter Bi–Te(1) bond length com-
pared to that of Bi–Te(2) is caused by an ionic bonding
component in addition to the covalent bonding (for gen-
eral discussion and reviews see [2,3]). The interatomic and
interplanar distances of the Sb2Te3 and Bi2Te3 crystals
are very similar, therefore it is possible to get mixed crys-
tals (Bi1−xSbx)2Te3 of very high quality. In connection
with the small effective mass of the carriers and the pos-
sibility to vary their concentration there is the chance to
observe galvanomagnetic quantum effects near the quan-
tum limit in these materials.

2 Experimental

From a bulk stoichiometric (Bi0.25Sb0.75)2Te3 single crys-
tal, grown by the Czochralski method, two adjacent sam-
ples were prepared by a diamond saw and by cleaving with
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Fig. 1. Geometrical arrangement of current, resistance and
Hall contacts to the trigonal axis and layered structure of the
samples, respectively.

the dimensions

sample I: 16× 2.17× 0.89 mm3

sample II: 16× 1.97× 0.33 mm3

and attached to a ceramic substrate (see Fig. 1). In sample
I the layer stacks are perpendicular and in sample II par-
allel to the substrate and to the plane of potential contact
arrangement. In both cases the layer stacks are parallel
to the sample length and to the electrical current. The
current probes were attached to the crystals by solder-
ing and the potential probes (40 µm thick Pt wires) by
spot welding. For Hall measurements the substrates with
the samples were mounted into a superconducting mag-
net (magnetic induction up to B = 18 T, temperature
T = 1.4 K ... 20 K) perpendicular to the field direction,
this way realizing B ⊥ c for sample I and B ‖ c for sample
II, respectively. For magnetoresistance measurements ad-
ditionally for sample II the arrangements I ⊥ B ⊥ c and
I ‖ B ⊥ c were realized. For the measurements a dc tech-
nique with a sensitivity of 10−8 V was used. To minimize
the errors caused by induction voltages due to sweeping
magnetic fields and by thermovoltages the voltage drops
at the Hall and resistance probes were measured at con-
stant magnetic field for both directions and by reversing
the measuring current. This way we got a discrete spec-
trum of absolute values of the Hall resistance and magne-
toresistance.

3 Theoretical background

The well-known reason for Shubnikov-de Haas (SdH) os-
cillations both in three-dimensional (3D) and in two-
dimensional (2D) electron systems is the orbital quanti-
zation perpendicular to a strong magnetic field B. For the
energy levels of the charge carriers one obtains (see e.g.
[4] for 2D systems):

En = E0 + (n+ 1/2)~ωc + sgµBB (1)

with the cyclotron frequency ωc = eB/mc, the spin quan-
tum number s = ±1/2, the Landé factor g, and the Bohr
magneton µB. E0 denotes the subband bottom energy of
the inversion layer (all relations and quantities are given

in SI units as e.g. in [4]). Equation (1) is also valid for
the 3D case, setting E0 = 0 and adding a term for the
carrier motion parallel to B. Neglecting the last term in
(1) and presuming that the Fermi energy EF and the cy-
clotron mass mc do not depend on B, the Landau splitting
is ~ωc = ~eB/mc|E=EF . This gives a periodicity in 1/B
of the density of states and therefore a corresponding pe-
riodic behavior in the galvanomagnetic properties.

Schematically including the separate spin splitting
term equation (1) can be written in the form

En −E0 =

(
n+

1

2
±

1

2
S

)
~ωc (2)

where S = gmc/2m0 is the ratio of spin splitting relative
to the cyclotron splitting. By spin splitting the spin up and
spin down Landau level ladders are therefore shifted rel-
ative to the Landau ladders without spin influence, caus-
ing a double set of periods in 1/B in the galvanomagnetic
properties for constant S. A value S > 1 would lead to a
crossing of the spin up and spin down levels originating
from different quantum numbers n in (2).

The calculation of the absolute amplitudes of the SdH
oscillations is complicated due to the problem of electron
scattering in magnetic fields, but the damping of these
amplitudes A with increasing temperature, A ∝ A0RT ,
provides one of the best estimates for the cyclotron mass
mc (see [5] and therein the discussion about previous pub-
lications; a detailed review of magnetic field induced os-
cillations including SdH oscillations is given by Shoenberg
[6], and for a review of the 2D electron gas properties
see [7]):

RT =
2π2kT/~ωc

sinh(2π2kT/~ωc)
=

2π2kTmc/~eB
sinh(2π2kTmc/~eB)

(3)

with ωc as above. This relation is deduced for a 3D electron
gas, but is also applicable to 2D inversion layers [8,9].

According to the Onsager relation the SdH oscillation
period ∆(1/B) is inversely proportional to the extremal
cross sectional area A⊥ (perpendicular to B) of the Fermi
surface ∆(1/B) = 2πe/~A⊥. For a parabolic dispersion
the relation between the SdH period ∆(1/B) and the car-
rier concentration n is

3D: ∆(1/B) =
2e

~
(gsgν/6π

2n)2/3 (4a)

2D: ∆(1/B) =
e

2π~
(gsgν/n) (4b)

with gs and gν the spin and valley degeneracy factors,
respectively.

4 Results and discussion

4.1 Hall plateaus and giant oscillations

Figure 2 shows the Hall resistivity ρxy = dUH/I (d sample
thickness) for B ⊥ c up to B = 16 T and for B ‖ c
up to B = 18 T, respectively. In the first case we see a
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Fig. 2. Hall resistivity ρxy as a function of the magnetic field
B at T = 1.4 K; the direction of B is parallel to the trigonal
axis (B ‖ c, open circles) and perpendicular to the trigonal
axis (B ⊥ c, filled circles).

nearly constant slope of the Hall resistivity, whereas for
B ‖ c remarkable plateaus or kinks are visible. The average
slopes of the ρxy versus B curves RH = ∆ρxy/∆B in
both cases are almost identical (for B ≥ 4T ), leading to a
p-type carrier concentration

nH = (eRH)−1 = 3.6× 1019 cm−3 (5)

independent from current and magnetic field direction to
the crystal axes, respectively.

Figure 3 shows the Hall resistivity ρxy for B ‖ c in a
log(ρxy) versus 1/B representation, with arrows marking
the centres of the Hall plateaus. We find doublets with a
period in 1/B:

∆(1/B) = (0.086± 0.002) T−1. (6)

The extrapolation of the ∆(1/B) periods towards highest
fields leads for the set of periods marked with ↓ arrows in
Figure 3 to a value B ∼= 40 T (dashed arrow in Fig. 3),
whereas for the other set (marked with ↑ arrows) an ex-
trapolation is not possible for finite fields, demonstrating
that the last Landau level is reached (compare Fig. 9).

Figure 4 shows the magnetoresistivity ρxx for the two
samples for the configurations I ⊥ B ⊥ c (samples I and
II), I ‖ B ⊥ c and I ⊥ B ‖ c (sample II, see also Fig. 1).
The magnetoresistivity ρxx for all cases with B ⊥ c, after
raising with field, tends to saturation with small superim-
posed oscillations for high fields, whereas for the configu-
rationB ‖ c in fields B > 5 T we observe giant oscillations,
the amplitudes of which are at least an order of magnitude
larger than for the cases B ⊥ c.

A closer look to the large oscillation in Figure 4 shows
that it is weakly modulated (e.g. at B ∼= 15 T). To show
this modulation the second derivative of the resistivity

Fig. 3. Hall resistivity ρxy for B ‖ c as a function of the inverse
magnetic field 1/B. The arrows mark the positions of the Hall
plateaus, showing two sets of equal periods. The dashed arrow
is the extrapolation to the highest field region (see text). In the
lower set an extrapolation is not possible, showing that the last
Landau level is reached.

Fig. 4. Magnetoresistivity ρxx versus magnetic field B for dif-
ferent configurations of current I, magnetic field B and trigonal
axis c for the two samples at T = 1.4 K (see Fig. 1).

with respect to B (from a measurement with enhanced
density of experimental values) is shown versus 1/B in
Figure 5.

From the results shown in Figures 2 and 4, we
can estimate a hole carrier mobility µ = RHσ to
µ ∼= 3.7 × 103 cm2/Vs leading to µB = ωcτ ∼= 6 for
B = 16 T, demonstrating that we reach with our
material and the available magnetic fields the high
field limit (the residual resistance ratio amounts to
ρ(300K, B = 0)/ρ(1.5K,B = 0) = 10.6).
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Fig. 5. Second derivative of the magnetoresistivity d2ρxx/dB
2

vs. reciprocal magnetic field 1/B of the giant ρxx oscillation in
Figure 4 (open circles) for enhanced density of experimental
values (B ‖ c, T = 1.4 K).

Fig. 6. Temperature dependence of the ρxx oscillation (see
Fig. 4, open circles) for B ‖ c ⊥ I.

Figure 6 shows the temperature dependence of the gi-
ant oscillations B ‖ c from Figure 4 for temperatures in
the range T = 1.4 ... 20 K. It is remarkable, that in the
temperature range T = 1.4 ... 4.2 K the damping is very
weak and that even at T = 20 K the oscillations are far
from being damped out. The estimation of the cyclotron
mass mc for a fixed magnetic field B was done as follows:
for the most pronounced oscillation minima in Figure 6 at
B ∼= 11.6 T the maximum amplitudes for this field were in-
terpolated from the neighbouring maxima at B ∼= 10.3 T
and B ∼= 13.6 T, respectively (see e.g. [10]). The resis-
tivity differences between these interpolated values and

Fig. 7. Amplitude of the SdH oscillation at B = 11.63 T in
dependence on the temperature (open circles, related to the
right and the upper scale). The lines are the calculated curves
x/ sinh(x) with x = 2π2kT/~ωc = 2π2kTmc/~eB for differ-
ent mc values (see Eq. (3)). The sketched x scale relates to
mc = 0.117m0, for other mc values this scale has to be cor-
rected by the factor mc/0.117m0 (see Fig. 6 and text).

the measured minima are drawn in Figure 7 (circles) as
2×amplitude related to the the temperature scale. Fitting
these points to the oscillation temperature damping factor
RT (Eq. (3)) delivers a cyclotron mass mc = 0.117m0 of
the carriers. This value is larger than the published one
mc ≈ 0.09m0 [19], but the authors admit considerable un-
certainties because they measure very small amplitudes.

4.2 Correlation between Hall resistivity and SdH
oscillations

Figure 8 shows the Hall resistivity ρxy and the magnetore-
sistivity ρxx in dependence on the magnetic field from 5 T
to 18 T. The following features are remarkable:

i) the plateaus in the Hall resistivity ρxy begin to ap-
pear at a magnetic field where the resistance ρxx has a
minimum, and they vanish, when ρxx has a maximum
value;

ii) between the ρxy pairs of plateaus marked in Figure 8
(see also Fig. 3), we see additionally a minimum and
a maximum in ρxx (see dashed square in Fig. 8), not
accompanied by a pronounced plateau of ρxy.

The unambiguous correlation between ρxx and ρxy on
the one hand and the characteristic differences in the
shape of the Hall resistivity plateaus on the other hand
show, that for the period ∆(1/B) of the SdH oscillations
the value (6) holds, too, and not a very smaller one as
it could be the impression at first glance, looking only at
Figure 4.
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Fig. 8. Hall resistivity ρxy (open circles, left scale) and magne-
toresistivity ρxx (filled circles, right scale) as a function of the
magnetic field B (in log scales) for B ‖ c and T = 1.4 K (for
the notations of the resistivity maxima see Fig. 9 (left diagram)
and Sect. 4.2).

Table 1. Magnetic field strengths (error ∆B = 0.03 T) at the
maximum values of the SdH oscillations; the row arrangement
corresponds to the correlation with the Hall plateaus of kinks
(See Figs. 3 and 8).

kind of maximum BmaxSdH/T

↑ 13.60 6.40 4.12 3.08

8.15 4.73 3.30

↓ 10.28 5.51 3.70

4.3 Spin splitting

From the 1/B-periods of the Hall plateaus in Figure 3
we conclude with relations (1) and (2), respectively, that
the charge carriers have a unique cyclotron mass but they
are spin split. In order to estimate the spin splitting with
respect to Landau splitting in relation (2) we use the B-
positions of the conductivity oscillation maxima, since a
Landau level passing through the Fermi surface causes a
maximum in the conductivity σxx. The relation between
the measured values ρxx and ρxy with σxx and σxy is

ρxx =
σxx

σ2
xx + σ2

xy

; σxx =
ρxx

ρ2
xx + ρ2

xy

· (7)

The results are collected in Table 1, showing the B values
for the σxx maxima of the SdH oscillations.

Figure 9 gives the positions of the SdH-maxima (thick
lines) as a term scheme in a 1/B scale for two possible
combinations of the spin split terms and the Landau split-
ting on the basis of relation (2) (compare [6], p. 425, es-
pecially for the problem of the shown ambiguity of term
coordination).

i) Instead of the doublets in the Hall plateaus, the SdH-
oscillations arrange in a triplet structure, where the

lowest and the highest terms of a triplet are correlated
with the pronounced Hall plateaus or kinks (Fig. 3),
whereas the middle term is only correlated with the
mentioned slightly decreased slope of the Hall resistiv-
ity (see Fig. 8 and Sect. 4.2).

ii) Taking into account only the upper and lower terms
we get for the ratio S of spin to cyclotron splitting
for both term combinations of Figure 9 the ambiguous
value S = 1± 0.25.

iii) A decision between the two possible term schemes of
Figure 9 can only be obtained by extending the mea-
surements to magnetic fields B ∼= 40 T, i.e. the detec-
tion of the term labelled with 0−. Because of the slight
increase of the splitting with decreasing magnetic field
in the right diagram and, reversed, a slight decrease of
splitting in the left diagram of Figure 9 we favour the
left term coordination, the term labels of which (quan-
tum number n and sign of spin splitting in Eq. (2)) are
also used in Figures 8 and 10.

iv) Figure 9 shows that the lowest Landau level for one
spin direction is reached.

v) Angular dependent measurements of the SdH oscilla-
tions [11] show, that tilting of the magnetic field with
respect to the trigonal axis c drastically influences am-
plitudes and frequency, not compatible with the sim-
ple replacing of B by B⊥ for Landau splitting and
unchanged B for spin splitting (B⊥ = B cosΘ with
Θ being the tilt angle), as it works e.g. for inversion
layers [9].

For the analysis of oscillations in magnetic fields often
a diagram as Figure 10 is used (see e.g. [6,10,21]. Inte-
gers (corresponding to units of π or 2π of the oscillation
frequency) are attributed to the 1/B values of maxima,
minima or crossings with the mean line of the oscillations,
this way showing frequency changes as deviations from a
straight line. The ordinate intercept of the extrapolated
curve for 1/B = 0 corresponds to the phase of the oscilla-
tions. In our case we took the oscillation maxima and used
the Landau level notation from Figure 9, left diagram. As
Figure 10 shows we find within the experimental accu-
racy nearly equidistant straight lines for our triplet term
structure from Figure 9. Except the dashed values, the ex-
istence of which will be discussed later, equation (2) with
constant S and mc is confirmed.

4.4 Comparison with published results

The Brillouin zone of Bi2Te3 resulting from the
tetradymite structure was sketched and discussed else-
where [12,13]. Band structure calculations agree in the
prediction of a six valley type conduction band (but
with different positions of the corresponding Fermi sur-
face ellipsoids in the mirror planes of the Brillouin zone),
whereas the valence band may contain either three or six
valleys [13–15]. SdH measurements concerning the valence
band are published e.g. for p-Bi2Te3 [16,17], p-Sb2Te3 [18],
and the mixed system p-(Bi1−xSbx)2Te3 [19] with the
following aspects important for the discussion of our
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Fig. 9. Possible schemes of Landau (cy-
clotron) level spacings ~ωc with the mea-
sured spin split level spacings (thick lines)
as a function of 1/B (right scale) (see text).

Fig. 10. Integer values n, attributed to the measured giant
SdH maxima according to relation (2) and Figure 9 (left) with
Table 1, versus the corresponding 1/B values (the SdH maxima
without clear Hall plateaus are marked by dashed circles, comp.
Fig. 8)

measurements:

i) The authors postulate a six valley (or 12 valley [18])
valence band. Because of the arrangement of the corre-
sponding Fermi surface ellipsoids pairwise in the three
mirror planes of the Brillouin zone in general three
different extremal cross sections A⊥ of these ellipsoids
create with ∆(1/B) = 2πe/~A⊥ three SdH periods.
Only for B ‖ c (c: trigonal axis) one single oscillation
period is observed. All oscillations may be spin split.

ii) No absolute values of the oscillation amplitudes are
published, but it is stated, that for hole concentrations
p > 1019 cm−3 in p-Bi2Te3 the SdH amplitudes (B ‖ c)
are small and hence the accuracy of the mc determi-
nation is poor [16]. For the system p-(Bi1−xSbx)2Te3

for x > 0.6 very small SdH amplitudes are reported
and for x ≥ 0.8 no spin splitting is observed [19]. In
no case a remarkable dependence oft the amplitude on
the direction of the magnetic field is reported.

iii) Increasing the hole concentration above
pH = 3 × 1018 cm−3 leads to discrepancies be-
tween the Hall data and the SdH periods (compare
Eq. (4a)). These problems are attributed to the filling
of a second valence band.

4.5 Discussion

With respect to the published results, our measurements
can be interpreted as follows:

i) the measured relatively small oscillations for B ⊥ c
(Fig. 4), which are not correlated with plateaus or
kinks in the Hall resistivity (Fig. 2) and the superim-
posed weak oscillation for B ‖ c (Fig. 5) are bulk SdH
oscillations well-known from literature in the system
Bi(Sb)2Te3 [16–19];

ii) the giant oscillations for B ‖ c which are correlated
with Hall plateaus can be considered as a sort of a
quantized Hall effect (QHE) in our layered material.

Hall effect plateaus and correlated giant SdH oscil-
lations are well-known features of a strictly 2D electron
gas in a magnetic field, first realized in inversion layers of
MosFets [20]. Our material, however, is a bulk single crys-
tal with a highly anisotropic layered structure.

The occurrence of the QHE in an anisotropic three di-
mensional electronic system was proved in [21]. Via MBE
a GaAs/(AlGa)As superlattice structure was grown con-
taining 30 quantum wells with well thicknesses of 188 Å
and thin barriers of 38 Å. The QHE found in this sys-
tem coexists with a three dimensional dispersion of the
electrons. The values of the QHE plateaus ρixy can be ex-

pressed with a 25% accuracy as ρixy =
1

i

h

e2

1

j
, with i be-

ing the usual counter of the QHE plateaus; j equals the
number of quantum wells and thus 1/j simply takes into
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account that j QHE layers form a parallel circuit in the
quantum well system. It is argued that because of the dis-
persion perpendicular to the barriers each Landau level
is broadened from a δ function to a band which reflects
the 1D density of states in this direction. With a Kronig-
Penney model for computing the dispersion perpendicu-
lar to the barriers most of the features could be explained
quantitatively.

In analogy to this system one could regard our lay-
ered material as a multiple quantum well structure: each
layer stack separated by ultrathin barriers in the planes
where van der Waals bonding acts. But calculations
with a Kronig-Penney model (parameters: m∗ = 0.12m0

from Fig. 7, well width a = 7.4 Å and barrier width
b = 2.7 Å as for our layer stacks [2,3], barrier height
V = 50 ... 500 meV) deliver no remarkable deviation from
a simple parabolic dispersion with the above m∗ for the
direction perpendicular to the layer structure, i.e. the van
der Waals bonds of the layers cannot produce a connected
multiple quantum well structure in the crystal. The con-
cept of a superlattice-like structure of our material there-
fore fails to explain the QHE like phenomena.

In order to clarify the origin of the giant SdH oscilla-
tions and the related Hall plateaus and kinks found in our
material we state the following results.

i) The features occur only for B ‖ c and I ⊥ c, i.e.
there is a large anisotropy which shows a 2D behavior
(Fig. 4).

ii) The carrier concentration obtained from the periods
∆(1/B) for the 3D case (Eq. (4a)) is more than one
order of magnitude smaller than that one calculated
from the slope of the ρxy versus B curve. An explana-
tion of the measured effect within a 3D-scheme there-
fore fails.

iii) The values of (1/B), where the SdH maxima are found
fit in a scheme of triplets (Fig. 9) which cannot be
correlated with charge carriers having spin s = ±1/2
but with S = 1, 0, −1. This points to electron (hole)
pairs being responsible for the large SdH oscillations
in the layer planes.

We therefore suggest, that a mechanism active within
the layer stacks of the material leads to a partial 2D elec-
tron (hole) pairing in the planes sandwiched between van
der Waals bonds.

Since years carrier pairing mechanisms are widely un-
der discussion in connection with the high temperature
superconductivity (for a short review see e.g. [22]). Among
them the bipolaronic pairing should be favoured by a low
dimensional structure, mixed valence states of one sort of
atoms, and a low carrier density (for a detailed review
see [23]). The properties of our material meet these points
(see also Sect. 1). The bipolaronic mechanism is based on
a concept of pairing in real space. The bipolarons should
align themselves along chains in the material of lower di-
mensionality, whereby the attractive interaction can over-
come the Coulomb repulsion of the two carriers only for a
small distance [24].

We therefore conclude, that the carrier pairing in our
material should be parallel to each layer stack in real

space, resulting in a set of j nearly 2D sheets of paired
carriers in a 3D electronic system (with j the number of
layer stacks in our sample).

This model can explain the main features of our mea-
surements.

i) In the bipolaron model the triplet structure of Figure 9
corresponds to “near neighbor site” bipolarons (Heitler
London pairs).

ii) Computing n for a 2D sheet after (4b) with the
oscillation period (6) and a valley degeneracy gν = 3
(Sect. 4.4, [7,13,15]), adding for all layer stacks
(10.1 Å stack thickness and 0.33 mm sample thickness
corresponding to 3.3× 105 stacks) and considering the
triplet structure of the oscillations (Fig. 9) we get a
carrier concentration n2D = 2.5 ... 2.6 × 1019 cm−3.
This should be the fraction of the carrier concentra-
tion involved in 2D pairing.
The same value is obtained with the well-known
expression for the degeneracy of a Landau level
n = eB/h (see e.g. [4]), taking for B the value of the
pronounced minimum B = 11.63 T (Figs. 4 and 6) and
counting three occupied Landau levels corresponding
to the left diagram in Figure 9 (valley degeneracy,
number of sheets and sample geometry as above).
The difference n1 to the total concentration
nH = 3.6 × 1019 cm−3 derived from the Hall
data (5), n1 = nH − n2D, then is the reason for the
weak upword modulated bulk SdH oscillation from
Figure 5. Taking the relation SdH period ⇔ carrier
concentration (4a) in the adjacent system p-Sb2Te3

[18] as comparison for our material, n1 is nearly
confirmed by the oscillation period in Figure 5.

iii) Presuming two “groups” of carriers – one of them in-
volved in 2D carrier pairing and showing plateaus in
the Hall effect and the other one showing 3D behav-
ior – the measurement should reflect their properties
in parallel, i.e. the resulting Hall resistivity is lower
than that ones of the single carrier groups and e.g. the
plateaus of the 2D carrier group are smeared out. Us-

ing the relation
1

ρxy
=

1

ρ2D
xy

+
1

ρ3D
xy

which should be

applicable after [25] for two carrier groups in the high
field limit we calculated the Hall resistivity ρ2D

xy from

the measured values ρxy (with ρ3D
xy = B/en1(3D) and

n1(3D) = nH − n2D the difference between the total
carrier concentration nH (5) and n2D as above).
The result is shown in Figure 11 (open circles) in com-
parison to the measured values (filled circles). The
right ordinate axis is scaled in units of the mea-
sured Hall resistance RHall = UHall/I (UHall: Hall
voltage, I: measuring current), whereas the left ordi-
nate is scaled in units of the (bulk) Hall resistivity
ρxy = RHalld; (d = 0.33 mm sample thickness).
If the model of 2D carrier sheets within the crystal
planes works, then the corresponding Hall resistance
R2D
Hall should result from the connecting in parallel of

the j = 3.3× 105 layer stacks (thickness of the stacks
1.01 nm [2,3] in our material). Considering as above a
valley degeneracy gν = 3 we get for the resulting Hall
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Fig. 11. Hall resistance or Hall resistivity, respectively, for
B ‖ c and T = 1.4 K (filled circles: measured values; open cir-
cles: computed values in the high field limit for the fraction of
holes assumed to be paired; see text). The second right ordinate

scale shows the QHE plateau values RiHall =
1

gν

1

j

h

ie2
for j par-

allel 2D carrier sheets and a valley degeneracy gν (j = 3.3×105 ;
gν = 3; i = 3 ... 7).

plateau values

RiHall =
1

gν

1

j

h

ie2
(8)

with the Klitzing value h/e2 = 25.812 ... kΩ.
In Figure 11 these values for i = 3 ... 7 are sketched
on an additionally ordinate axis on the right side. It
is obvious that the absolute values can not coincide
because the simple calculations according to the two
band model are nearly correct only in the high field
limit, whereas for low fields the Hall resistance is gen-
erally underestimated. Shifting this axis downward in
the shown way the plateau values of the “2D carriers”
coincide with the quantized Hall effect values after (8),
this way showing that the differences of the plateaus
are in agreement with the QHE. Independent from the
question whether the assumed valley degeneracy is cor-
rect and if one can accept the proposed carrier sepa-
ration the correct order of magnitude of the quantized
Hall plateaus is met by the suggestion, that the num-
ber of parallel 2D carrier sheets corresponds to the
number of layer stacks in our sample.

Up to now QHE like behavior in bulk crystals is ob-
served in some salts of the organic TMTSF molecule (well
known as organic superconductors) under partly difficult
experimental conditions as high pressure (for a review
see [26]). As reason for the QHE plateaus in this sys-
tem semimetallic FISDW (field induced spin density wave)

phases, coupled to the layer structure, are thought to be
responsible.

Giant SdH oscillations ( without Hall plateaus ) are re-
ported on certain phases of the salts of the organic BEDT-
TTF molecule (see e.g. [27] for β-(BEDT-TTF)2I3). They
are attributed to the warped cylindrical Fermi surface
caused by the layered structure of the material.

Magnetization measurements in high fields at α-
(BEDT-TTF)2TlHg(SCN)4 indicate the presence of deep
minima in the transverse magnetoresistivity, the behavior
of which is explained quantitatively in terms of enhanced
conductivity due to the QHE [28].

As pointed out above – supported mainly by the triplet
structure of the SdH oscillations and their correlation to
the Hall plateaus – we state that in our anorganic crys-
talline material a different mechanism produces QHE and
giant SdH oscillations. Independent from the differences a
layered structure seems to be the common prerequisite to
observe QHE in 3D materials.

5 Conclusions

In summary, we have shown that the holes in the investi-
gated (Bi0.25Sb0.75)2Te3 layered crystal produce SdH os-
cillations and plateaus of the Hall resistance which are in
strong contradiction to previous reports if the the mag-
netic field is perpendicular to the layer planes.

In this case, very large SdH oscillations correlated with
plateaus and kinks in the Hall resistance were measured.
The damping of the SdH amplitudes with increasing tem-
perature gives a cyclotron mass of 0.12m0, about 30%
larger than in published results.

The evaluation showed, that the periods of the SdH os-
cillations and the related Hall resistivity matches a scheme
of a triplet structure. In addition, the occurence of Hall
plateaus, the large amplitudes of the SdH oscillations, and
the relation of their periods with the carrier concentration
led us to suggest the existence of carrier pairing in the
quasi 2D sheets of the layered crystal structure.

This 2D layered structure, the existence of atoms of
one sort with different valence states and the relative low
carrier density are favourable circumstances for the bipo-
laron model to be the relevant carrier pairing mechanism.
Taking the suggested structure of parallel 2D sheets of
paired carriers coupled to the crystal layer stacks we ob-
tained a good coincidence of the Hall plateaus with the
values of the quantized Hall effect.
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